Search results

Search for "high quality factor" in Full Text gives 21 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • (KIMEC) sensors. A force sensor designed specifically for scanning probe microscopy must have a sharp tip that is readily positioned and scanned over a surface. We operate the sensor near a mechanical resonance with a high quality factor Q for enhanced responsivity to force. The mechanical resonator is a
PDF
Album
Full Research Paper
Published 15 Feb 2024

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • ][29][30][31][32]. FFOs exhibit sharp emission maxima at the Fiske steps [9][12][13]. Such a conditional emission indicates that several additional and equally important phenomena (apart from the ac-Josephson effect) are involved in FFO operation [10]. The excitation of high-quality factor, Q ≫ 1
PDF
Album
Full Research Paper
Published 26 Jan 2023

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • achieved with the highest sensitivity of 453 nm/RIU and a maximum figure of merit (FOM) of 9808. Such dual-band high-Q resonator is expected to have promising applications in multi-wavelength sensing and nonlinear optics. Keywords: bound states in the continuum; dual band; high quality factor; localized
PDF
Album
Full Research Paper
Published 25 Nov 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • from the measured first mode flexural resonance frequency f1 using: The expressions for the minimally measurable force derivative (Equation 1 and Equation 2) arising from thermal and deflection sensor noise, respectively, reveal that a high quality factor (for a low thermal noise) and a low modal
  • for the coating of high-quality factor cantilevers for magnetic force microscopy [29]. In future work, much thinner coating thicknesses could be used, or the coating could be applied to the cantilever side to reduce energy dissipation processes arising from the grain boundaries of the polycrystalline
  • the bandwidth B, confirming that the relevant noise source with our current interferometer sensor is the deflection noise and that the oscillator noise remains negligible (as expected for high-quality factor conditions). Consequently, the high resonance frequency-to-stiffness ratio of microfabricated
PDF
Album
Full Research Paper
Published 11 Oct 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • continuum in the subwavelength dielectric grating. The physical origin of the absorption with high quality factor is examined by investigating the electromagnetic field distributions. Interestingly, we found that the proposed absorber possesses high spatial directivity and performs similar to an antenna
  • shift as the background refractive index changes [14]. Narrow-band absorbers have attracted attention in practical applications due to the absorption with high quality factor (Q-factor), which is beneficial to improve the sensing performance. Up to now, many strategies for improving the Q-factor have
PDF
Album
Full Research Paper
Published 19 Jul 2022

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • temperature range [1]. In addition, quartz tuning forks have a high elastic constant, a high quality factor (Q factor), and are self-sensing due to the piezoelectric effect [1]. Therefore, a quartz tuning fork can be used as a force sensor. The central part of the “qPlus sensor” is a quartz tuning fork of
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • . Bushan stated that the cantilever stylus used in the AFM should have properties such as low normal spring constant, high resonance frequency, high quality factor, high lateral spring constant, and short cantilever length [12]. V-shaped cantilevers have a unique set of properties, that is, low normal
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • contaminants on the surface when measuring the mechanical properties of atomic-sized defects [15][16][17]. Furthermore, the high quality factor of the AFM cantilever that is achieved under UHV conditions can be very beneficial in dynamic AFM modes, as the Q-factor is inversely proportional to the force
PDF
Album
Full Research Paper
Published 03 Jul 2019

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • other optical methods. These modes are of intrinsic interest, however, and have also attracted attention due to their relatively high quality factor and long lifetimes that may underpin new optical sensors with a higher sensitivity and figure-of-merit than devices utilising “bright” dipole modes [35
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • damping mechanism. The quality factor of the cantilever typically drops by a factor of 50 when immersed in water. By trapping air inside the hydrophobic encasement [26][27][28][29], the resonator maintains a high quality factor and resonance frequency. For the liquid air comparison a softer cantilever (L
PDF
Album
Full Research Paper
Published 08 May 2018

Design of photonic microcavities in hexagonal boron nitride

  • Sejeong Kim,
  • Milos Toth and
  • Igor Aharonovich

Beilstein J. Nanotechnol. 2018, 9, 102–108, doi:10.3762/bjnano.9.12

Graphical Abstract
  • -resonators such as a high chemical stability and an excellent thermal conductivity [22][23]. In this work, we propose to use hBN for the fabrication of photonic crystal cavities (PCCs). We design two dimensional (2D) PCCs and show that they have high quality-factor (Q-factor) resonances in the visible
PDF
Album
Letter
Published 09 Jan 2018

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • simple DMA case, where both force and displacement oscillate harmonically (Equation 3 and Equation 5). The calculation of dissipated energy in tapping-mode AFM is well established for high quality factor (high-Q) environments [16][17], and has been successfully performed regardless of the source of
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • cylindrical magnetic microwire [11] (see inset of Figure 6a and the Experimental section for details on the setup). Due to the low stiffness (spring constant k = 6 mN/m) and high quality factor (2000 < Q < 4000 under vacuum) of the cantilever, its frequency accurately probes the magnetic force produced by the
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • ]. The sensing mechanism of the latter is based on a high quality factor MaGMR that allows larger light interaction with the liquid sample. It should be noted that the presented fabrication approach also provides a convenient method to introduce particular substances (load) of interest inside the
PDF
Album
Full Research Paper
Published 08 Jun 2017

Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

  • Julia Körner,
  • Christopher F. Reiche,
  • Thomas Gemming,
  • Bernd Büchner,
  • Gerald Gerlach and
  • Thomas Mühl

Beilstein J. Nanotechnol. 2016, 7, 1033–1043, doi:10.3762/bjnano.7.96

Graphical Abstract
  • However, it is obvious that in the limit of small dissipation or correspondingly a high quality factor of the cantilever these frequencies coincide well. The resonance frequency of a beam can easily be determined from amplitude response curves and, since all our discussions will be based on such curves
PDF
Album
Full Research Paper
Published 18 Jul 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • under UHV condition has the advantage of a high quality factor (Q ≈ 30,000) due to the suppression of viscous damping and therefore increases the force sensitivity by orders of magnitude [27][28]. To analyse complex and large micro-structures a large positioning and scanning unit is necessary, under
PDF
Album
Full Research Paper
Published 28 Dec 2015

Control theory for scanning probe microscopy revisited

  • Julian Stirling

Beilstein J. Nanotechnol. 2014, 5, 337–345, doi:10.3762/bjnano.5.38

Graphical Abstract
  • excited by high gains. The system can be made stable under higher gains by increasing the eigenfrequency or decreasing the Q of the resonator. For these reasons components with a high quality factor and a low resonant frequency are unsuitable as part of the SPM scanners. In Figure 5a the PI controller
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • of the Lorentzian with its high quality factor, it is sufficient to use one branch of the Lorentzian, and expressed in degrees we obtain: This expression gives the phase noise with the use of a lock-in amplifier. It had been derived in a similar way by Rast et al. [13]. It may not be valid for other
PDF
Album
Full Research Paper
Published 02 Jan 2014

Interpreting motion and force for narrow-band intermodulation atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 45–56, doi:10.3762/bjnano.4.5

Graphical Abstract
  • Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip–surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a
  • , providing deeper insight into the tip–surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface. Keywords: atomic force microscopy; AFM; frequency combs; force spectroscopy; high-quality-factor resonators; intermodulation; multifrequency
  • flexural eigenmode of the cantilever. The high-quality factor of the resonance ensures that the responding motion of the tip is approximately sinusoidal in time, with the same frequency as the drive signal [11][12]. Such periodic motion is best analyzed in the frequency or Fourier domain, where the motion
PDF
Album
Full Research Paper
Published 21 Jan 2013

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  • Miriam Jaafar,
  • David Martínez-Martín,
  • Mariano Cuenca,
  • John Melcher,
  • Arvind Raman and
  • Julio Gómez-Herrero

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Graphical Abstract
  • high quality factor Q of the cantilevers in vacuum, which present a settling time given by τcl= Q/(πf0). Frequency-modulation AFM (FM-AFM, also known as noncontact AFM) [9] is the classical alternative to AM allowing atomic resolution in UHV chambers [10] at higher scanning rates. FM-AFM has recently
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • Equation 1 [36]. UHV measurements The images in UHV were acquired with a custom built AFM available at the University of Basel [21]. The base pressure was below 10−9 mbar. Due to the high quality factor in UHV, the out-of-contact-resonance frequency shift was used as the imaging parameter instead of the
PDF
Album
Full Research Paper
Published 04 Feb 2011
Other Beilstein-Institut Open Science Activities